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ABSTRACT

The fusion of multiple imaging modalities presents an im-
portant contribution to machine vision, but remains an on-
going challenge due to the limitations in traditional calibra-
tion methods that perform a single, global alignment. For
depth and thermal imaging devices, sensor and lens intrinsics
(FOV, resolution, etc.) may vary considerably, making per-
pixel fusion accuracy difficult. In this paper, we present Ac-
cuFusion, a two-phase non-linear registration method to fuse
multimodal images at a per-pixel level to obtain an efficient
and accurate image registration. The two phases: the Coarse
Fusion Network (CRN) and Refining Fusion Network (RFN),
are designed to learn a robust image-space fusion that pro-
vides a non-linear mapping for accurate alignment. By em-
ploying the refinement process, we obtain per-pixel displace-
ments to minimize local alignment errors and observe an in-
crease of 18% in average accuracy over global registration.

Index Terms— Nonlinear Image Registration, Depth-
Thermal Fusion, Two-phase CNN, Multimodal Imaging

1. INTRODUCTION

The registration of multimodal images represents the pro-
cess of aligning and integrating multiple image streams into
a composite image. It has been well-studied for combin-
ing thermal and 3D imaging data [1, 2, 3]. This fusion
process provides multimodal sensor data that is crucial due
to its significance in facial authentication [3], autonomous
vehicles [4], remote sensing [5], medical imaging [6], and
6D-SLAM environmental reconstruction[7]. Numerous mul-
timodal image registration methods have been proposed, with
approaches including stereoscopic calibration and real-time
feature correlation [8]. These common registration meth-
ods involve the following steps: feature detection, template
matching, and transformation estimation [1]. However, de-
termining accurate correspondence becomes a hurdle due to
the challenges involved in detecting accurate and reliable
common features [9, 10] given the inconsistent edges within
each image type, aggravated by wide discrepancies in FOV
and resolution. To address this, we integrate the efficiency of
global rigid registration with localized non-linear displace-
ments into a two-stage convolutional fusion network. This
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Fig. 1. Two-stage deep learning solution for non-linear image
registration for real-time thermal-depth fusion.

enables us to leverage the benefits of scene independence and
efficiency of rigid methods with the improved accuracy of
localized deformations provided by non-linear registrations.

Work in multimodal registration has largely focused on
adapting stereoscopic calibration through a generated homog-
raphy transformation T using various depth-thermal template
designs [2]. Towards improving this level of accuracy, we
build on recent advances that have shifted to utilizing scene
dependent features with image-space or pixel-to-pixel corre-
spondence [11] and extend these approaches to provide an ac-
curate dense transformation space ~T (i, j) with displacements
for each pixel (i, j). These pixel-level displacements can im-
prove accuracy by optimizing the global error during train-
ing. The problem impeding this approach is that non-linear
feature alignment is an expensive run-time process. We must
identify how we can store dense image-space displacements
in a model that can process real-time data streams.

In our solution, we formulate a two-stage model that
performs a global preconditioning transformation followed
by localized deformations that perform per-pixel transforma-
tions. We achieve this by creating a non-linear registration
with localized deformations that integrates depth and thermal
data into spatial point-cloud data as shown in Fig. 1. By
performing dense image-space alignments performed at a
pixel-level, our method provides an efficient method for mul-
timodal fusion, even for device pairs with large differences in
Field-of-Views (FOVs) and resolutions.
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Fig. 2. Overall architecture: Dual streams (depth-thermal) are provided to our two-phase network. Training is performed to
identify the optimal alignment between edge features, forming a model for per-pixel displacements for non-rigid alignments.

2. PROPOSED METHOD: ACCUFUSION

We propose a new form of multimodal fusion through deep
learning. We combine two key phases: (1) a global rigid
alignment through a preconditioning network and (2) a pixel-
to-pixel non-rigid alignment network that predicts localized
alignments that can reduce the overall fusion error. These cor-
respond to the Coarse Fusion Network (CFN) and Refining
Fusion Network (RFN). Our solution assumes the provision
of depth and thermal images are available for training. The
run-time execution of the networks generates a displacement
field ~Ti,j as an output that can be applied to the input thermal
stream to perform a refined alignment to the depth stream.

2.1. Coarse Fusion Network (CFN)

The CRN serves as a preconditioning alignment towards ac-
curate fusion by aligning depth Id with thermal It images
at a global level. The network architecture consists of five
convolution layers followed by three dense layers, eventually
predicting the rotation, scale and translation of T . We are
using CNN variants of conventional registration approaches
[12, 13] based on edge-correspondence to generate training
sets. We represent Id and It as gray-scale images Igd and Igt
respectively to perform Edge(Igd , I

g
t )[14, 15, 16] reducing Id

and It to edge maps Ied and Iet where Ied,t : U → [0, 1]c. Thus,
when c = 1 and ∀U = 1 we consider Iet and Iet as point-
set representation pd and pt respectively to perform a rigid
alignment Rigid(pd, pt) [17, 18, 19] to determine the esti-
mate transformation matrix T . The depth image Id and cor-
responding T form input and expected training data for CRN.
During run-time, the CFN replaces conventional approaches
as a preconditioning step to the RFN as a coarse registration
by applying the predicted T to align Id with It image.

2.2. Refining Fusion Network (RFN)

The RFN serves as the second stage used to predict a per-
pixel dense displacement field ~T (i, j) to perform localized
non-linear deformations to provide optimal alignment of
depth data with thermal data. The RFN architecture is sub-
divided into identical networks. Each network consists of
3 convolutional layers, a dense layer and 3 deconvolutional
layers. The job of convolutional layers combined with the

dense layer is to learn and embed local deformations which
is processed further by deconvolutional layers to upscale to
match the required resolution of predicted field ~T (i, j). We
utilize an optical flow estimation algorithm [20] during train-
ing to determine the local deformations. We merge output
from these identical networks by Concat(tx, ty). We apply
OpticalF low(Ied , I

e
t ) to estimate the non-linear deformations

~T = (tx, ty) ∈ R(i×j) where the tx, ty are valid for U = 1
of Ied tracing back to pixels in Id representing edges. We es-
tablish map(Id, ~T ) to establish a relationship between depth
pixels d ∈ (Ied ∩ Id) and per-pixel displacements (tx, ty).
The linear relationship ~T = β̂0Id + ε̂i generates this map.
The Id and ~T form the input and expected data during train-
ing. After sufficiently saturating the training domain, RFN
during run-time predicts ~T to be applied to Id from CFN.
The ~T aligns pixels at a localized level refining the out-
put of CFN to improve registration accuracy. We generate
displacement error using Hausdorff distance [21], a well-
known technique in image space to measure the degree of
dissimilarity between two images or point sets. The goal is
to minimize the distance as much as possible. We compute
HCFN (Ied , I

e
t ) and HRFN (Ied , I

e
t ) where given two point sets

Ied = {d1, d2, d3...dp} and Iet = {t1, t2, t3...tq} we define
H(Ied , I

e
t ) = max(h(Ied , I

e
t ), h(I

e
t , I

e
d)) where h(Ied , I

e
t ) =

max
di∈Id

(min
ti∈It
‖di − tj‖) and h(Iet , I

e
d) = max

ti∈It
( min
di∈Id

‖ti − dj‖)

where ‖.‖ is the Euclidean distance between two points. A
lower Hausdorff value translates to good accuracy and vice-
versa. Thus, with RFN we aim for HRFN ≤ HCFN through:

argmin
i,j

~T = ||HRFN (Ied , I
e
t )||2 (1)

Where the field ~T (i, j) stores the displacements that generate
the minimized H(Ied , I

e
t ) edge alignment error. A key under-

standing of this approach is that it only generates a displace-
ment vector ~t for each edge pixel as a function of input depth,
computed using the depth lookup for the optical flow shown
in Figure 2. To account for displacements for all pixels, we
populate the training set with edges contained in the input
images for short-range distances (d ≤ 8.0[m]). For long-
range distances, we leverage a regression model of the map
for image-space displacement vectors to train the RFN.



Fig. 3. The two-phase network architecture: Coarse Fusion Network (left) and Refining Fusion Network (right)

3. IMPLEMENTATION DETAILS

At its core, our approach is a deep learning technique enabled
through the use of Convolutional Neural Networks (CNNs).
The method performs image-space operations to identify the
alignment required to fuse edge-features common to both
modalities. To generate the required training datasets, we use
a real-world modular template to generate edges used to train
multimodal correspondence. This is implemented in Keras
[22] with the TensorFlow [23] backend.

3.1. Template-based Correspondence

Image feature registration based on homography [2], or on
edge-correspondence mapping can be significantly simplified
through the use of a calibration template. While there are
template-free methods [11], we aim to provide the most ac-
curate training data possible during the calibration process.
There are three classes of templates for depth-thermal fusion:
passive, active, and human-guided. Passive templates are sim-
ple to construct and require no power. This method can be
as simple as holes in foam board [2]. Problems with pas-
sive templates include: low heat signature, poor edge detec-
tion, require correct environmental setup. Active templates
are heated by an external power source in a fixed pattern [2].
Human-guided templates could also be used [24] which re-
quires no construction. For best edge accuracy, we created an
active template where thermoelectric plates are combined into
a uniform heat distribution through copper-plated aluminium
with a matte surface, as shown in Figure 4.
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Fig. 4. Templates for edge-based correspondence. We use an
active template to train the distance interval 0.5[m] - 8.0[m].

3.2. Training and Network Configuration

The generation of our training dataset is defined by collect-
ing a sequence of synchronized depth and thermal images
over a spatial distance of 0.5[m] - 8.0[m]. This dataset pro-
vides the edge templates used to perform the accurate align-
ment process to identify the correspondence between edges in
each image modality. This correspondence results in a train-
ing dataset of edge-mapped consisting of recorded sequences
containing synchronized template video collected at 30[Hz].

The two networks by design function independently.
Thus, they undergo training separately. The dataset dis-
tribution for both remains 60% train, 20% test, and 20%
validation. For hyperparameters, the CFN is configured to
learn at 0.0001, with the Adam optimizer [25], the kernels
initialized as glorot uniform and have valid padding. The first
three layers have 5x5 kernel and followed by layers having
3x3 kernel size. The configured network uses the ReLU acti-
vation function and Mean Squared Error (MSE) to calculate
the loss during training. The Refining Fusion Network is
configured to learn at 0.001, Adam optimizer, a batch size
of 16, and an epoch size of 100. The upsampling layers
have the nearest interpolation as their configuration, while
the transpose layers have valid padding, glolot uniform as
kernel initialization. All the layers use LeakyReLu as their
activation function with an alpha of 0.3. The network was
trained using Euclidean distance as a metric of loss between
the predicted dense vector field and generated ground truth
dense vector field. This implementation aims to provide an
efficient fusion algorithm that can be executed on the GPU
for real-time systems. Our mobile system configuration is
an Intel i7-10750H, a 6-core processor coupled with Nvidia
GeForce RTX 2070 Max-Q, and 32GB of memory.

4. EXPERIMENTAL RESULTS

We evaluate our localized fusion approach by streaming depth
and thermal data from different experimental scenes and mea-
sure the Hausdorff distance as the sum of the pixel error cal-
culated. We have multiple experiment scenarios including:
(1) running vehicle, (2) face profile, (3) hand gesture, and (4)
vehicle with open-hood showing the engine compartment.
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Fig. 5. Resulting fusion of the thermal (left) and depth (cen-
ter) data used to generate the 3D fusion of a stationary vehicle.

Since the premise of the RFN is to provide localized trans-
formation ~T (i, j) to improve accuracy, we demonstrate our
method using low-resolution devices with a wide FOV dispar-
ity in challenging real-world scenarios. In our initial results,
we demonstrate the generation of the 3D point cloud gener-
ated from a running vehicle, as shown in Figure 5. The FOV
difference and limited resolution makes accurate fusion par-
ticularly challenging. We evaluate the accuracy using Haus-
dorff distance on the low resolution data and demonstrate the
versatility and robustness of different scenes to quantitatively
compare the alignment generated by the CFN with the RFN as
shown in Figure 7. For other datasets, including body move-
ment and the facial profile, maintaining key edges is required
for precise applications such as pedestrian tracking, gesture
recognition, and thermal-depth biometrics. Figure 6 illus-
trates the fusion result for identifying unique body features
commonly used in body-tracking and facial recognition. This
provides the ability to eliminate key features as shown in Fig-
ure 6 that may hamper recognition or the overall accuracy in
body movement or gesture tracking.
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Fig. 6. Resulting fusion for body movement and profile cap-
ture. Unique multimodal mappings can provide inter-modal
recognition, tracking, or biometrics based on localized detail
improvements provide by the our refined alignment network.
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Fig. 7. Alignment error measured as the accumulative dis-
tance in pixels (px) in the Hausdorff distance metric for five
selected experimental scenes. The average graph illustrates
the improvements facilitated by RFN with an overall 18% im-
provement in accuracy over CRN ranging from 9 to 28%.

5. DISCUSSION

Performing image-space fusion provides a reliable method for
identifying the best alignment between observable features
that can be mapped in a trained CNN model. Our approach
offers a hybrid method that performs the estimation using a
depth lookup map and a rigid global alignment, followed by
a non-linear refinement step. Based on the initial estimate of
this alignment, the refining network can improve the align-
ment between prominent features and localized mismatches.
This method works well when the alignment may be difficult,
including instances where the devices have large differences
in intrinsic characteristics such as the FOVs and image resolu-
tions. In our experimental setup, the FOV for depth and ther-
mal devices are 70◦ and 21.5◦ respectively. This illustrates
that even in this extreme case with limited image resolution,
our method can be used to improve overall accuracy. The
accuracy of the method is dictated by a combination of the
selected edge detection algorithm, training datasets, RFN for-
mulation, and hyper-parameters. While the accuracy can be
improved using this method, it still requires a template during
the training dataset generation. For the input of these images,
we assume that the synchronized images contain minimal dis-
tortion. We leverage data logistics reduction by utilizing CPU
and GPU processing for unifying the CFN and RFN in the
deep learning space. The improved accuracy level is key to
enabling new multimodal-related applications, including 3D
environmental reconstruction, facial authentication, and med-
ical imaging, where accuracy is paramount.

6. CONCLUSION

Most multimodal fusion techniques primarily rely on stere-
ographic homography or context-dependent features, and it-
erative point-set registration techniques to determine global
correspondence at run-time. Although we have seen recent
work relying on machine learning methods, with this paper,
we manage to reproduce coarse fusion with run-time effi-
ciency and a step further in image fusion by performing lo-
cal alignment, improving the accuracy by 18%. This provides
pixel-level 3D thermographic images accurate to edge-level
that benefit a wide variety of fusion applications.
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